825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer

General Description

The MAX9981 dual high-linearity mixer integrates a local oscillator (LO) switch, LO buffer, LO splitter, and two active mixers. On-chip baluns allow for single-ended RF and LO inputs. The active mixers eliminate the need for an additional IF amplifier because the mixer provides a typical overall conversion gain of 2.1 dB .
The MAX9981 active mixers are optimized to meet the demanding requirements of GSM850, GSM900, and CDMA850 base-station receivers. These mixers provide exceptional linearity with an input IP3 of greater than +27 dBm . The integrated LO driver allows for a wide range of LO drive levels from -5 dBm to +5 dBm . In addition, the built-in high-isolation switch enables rapid LO selection of less than 250ns, as needed for GSM transceiver designs.
The MAX9981 is available in a 36-pin QFN package ($6 \mathrm{~mm} \times 6 \mathrm{~mm}$) with an exposed paddle, and is specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

Applications

GSM850/GSM900 2G and 2.5G EDGE BaseStation Receivers
Cellular cdmaOne ${ }^{\text {TM }}$ and cdma2000 ${ }^{\text {TM }}$ BaseStation Receivers
TDMA and Integrated Digital Enhanced Network (iDEN) ${ }^{\text {TM }}$ Base-Station Receivers

Digital and Spread-Spectrum Communication Systems
Microwave Point-to-Point Links
cdmaOne is a trademark of CDMA Development Group
cdma2000 is a trademark of Telecommunications Industry Association.
iDEN is a trademark of Motorola, Inc.

Features

- +27.3dBm Input IP3
- +13.6dBm Input 1dB Compression Point
- 825 MHz to 915 MHz RF Frequency Range
- 70MHz to 170 MHz IF Frequency Range
- 725MHz to 1085MHz LO Frequency Range
- 2.1 dB Conversion Gain
- 10.8dB Noise Figure
- 42dB Channel-to-Channel Isolation
- -5 dBm to +5 dBm LO Drive
- +5V Single-Supply Operation
- Built-In LO Switch with 52dB LO1 to LO2 Isolation
- ESD Protection
- Integrated RF and LO Baluns for Single-Ended Inputs

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9981EGX-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 QFN-EP* $(6 \mathrm{~mm} \times 6 \mathrm{~mm})$

*EP $=$ Exposed paddle.
Pin Configuration/
Functional Diagram

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer

ABSOLUTE MAXIMUM RATINGS

VCC..-0.3V to +5.5 V | Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ |
| :--- |
| 36-Pin QFN (derate $33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) .. $+150^{\circ} \mathrm{C}$ |

DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to +5.25 V , no RF signals applied, all RF inputs and outputs terminated with 50Ω, 267Ω resistors connected from MAINBIAS and DIVBIAS to GND, $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	$V_{\text {CC }}$		4.75	5.00	5.25	V
Supply Current	Icc		260	291	325	mA
Input High Voltage	V_{IH}		3.5			V
Input Low Voltage	VIL				0.4	V
LOSEL Input Current	ILOSEL		-5		+5	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to $+5.25 \mathrm{~V}, \mathrm{PLO}=-5 \mathrm{dBm}$ to $+5 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=825 \mathrm{MHz}$ to $915 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=725 \mathrm{MHz}$ to 1085 MHz , $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{PLO}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=870 \mathrm{MHz}$, $\mathrm{fLO}_{\mathrm{L}}=770 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
RF Frequency	f_{RF}			825		915	MHz
LO Frequency	flo			725		1085	MHz
IF Frequency	fiF	Must meet RF and LO frequency range. IF matching components affect IF frequency range.		70		170	MHz
LO Drive Level	PLo			-5		+5	dBm
Conversion Gain (Note 3)	Gc	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \\ & \mathrm{fIF}^{2}=100 \mathrm{MHz}, \end{aligned}$ low-side injection, $\begin{aligned} & \mathrm{PRF}=0 \mathrm{dBm}, \\ & \mathrm{PLO}_{\mathrm{LO}}=-5 \mathrm{dBm} \end{aligned}$	Cellular band, $f_{R F}=825 \mathrm{MHz}$ to 850 MHz		2.7		dB
			GSM band, $\mathrm{f}_{\mathrm{RF}}=880 \mathrm{MHz}$ to 915 MHz		2.1		
Gain Variation from Nominal		$\mathrm{f}_{\mathrm{RF}}=825 \mathrm{MHz}$ to $915 \mathrm{MHz}, 3 \sigma$			± 0.6		dB
Conversion Loss from LO to IF		Inject PIN $=-20 \mathrm{dBm}$ at $\mathrm{fLO}+100 \mathrm{MHz}$ into LO port. Measure 100 MHz at IF port as Pout. No RF signal at RF port.			53		dB
Noise Figure	NF	100 MHz IF, low-side injection	Cellular band, $\mathrm{f}_{\mathrm{RF}}=825 \mathrm{MHz} \text { to } 850 \mathrm{MHz}$		10.8		dB
			GSM band, $\mathrm{ffF}_{\mathrm{RF}}=880 \mathrm{MHz} \text { to } 915 \mathrm{MHz}$		11.9		

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer

AC ELECTRICAL CHARACTERISTICS (continued)

(Typical Application Circuit, $\mathrm{V} \mathrm{CC}=+4.75 \mathrm{~V}$ to $+5.25 \mathrm{~V}, \mathrm{PLO}=-5 \mathrm{dBm}$ to $+5 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=825 \mathrm{MHz}$ to $915 \mathrm{MHz}, \mathrm{f} \mathrm{LO}=725 \mathrm{MHz}$ to 1085 MHz , $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=870 \mathrm{MHz}$, $\mathrm{f}_{\mathrm{LO}}=770 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Input 1dB Compression Point	$\mathrm{P}_{1 \mathrm{~dB}}$	Low-side injection				13.6		dBm
Input Third-Order Intercept Point	IIP3	PLO $=-5 \mathrm{dBm}$ to +5 dBm (Notes 3, 4)				27.3		dBm
2 RF-2 LO Spur Rejection	2×2	$\mathrm{f}_{\mathrm{RF}}=915 \mathrm{MHz}, \mathrm{fLO}=815 \mathrm{MHz}$, fsPUR $=865 \mathrm{MHz}, \mathrm{PRF}_{\mathrm{RF}}=-5 \mathrm{dBm}$		Main		53.3		dBc
				Diversity		43.2		
3 RF - 3 LO Spur Rejection	3×3	$\begin{aligned} & \mathrm{fRF}=915 \mathrm{MHz}, \mathrm{fLO}=815 \mathrm{MHz}, \\ & \mathrm{fSPUR}=848.3 \mathrm{MHz}, \mathrm{PRF}=-5 \mathrm{dBm} \end{aligned}$				79.7		dBc
Maximum LO Leakage at RF Port		$\begin{aligned} & \mathrm{PLO}=-5 \mathrm{dBm} \text { to }+5 \mathrm{dBm}, \\ & \mathrm{fLO}=725 \mathrm{MHz} \text { to } 1100 \mathrm{MHz} \end{aligned}$				-42		dBm
Maximum LO Leakage at IF Port		$\begin{aligned} & \text { PLO }=-5 \mathrm{dBm} \text { to }+5 \mathrm{dBm}, \\ & \mathrm{fLO}=725 \mathrm{MHz} \text { to } 1100 \mathrm{MHz} \end{aligned}$				-30.6		dBm
Minimum RF to IF Isolation		$\begin{aligned} & \mathrm{PLO}=-5 \mathrm{dBm} \text { to }+5 \mathrm{dBm}, \\ & \mathrm{fRF}=825 \mathrm{MHz} \text { to } 915 \mathrm{MHz} \end{aligned}$				18		dB
LO1 to LO2 Isolation		$\begin{aligned} & \text { fRF }=825 \mathrm{MHz} \text { to } 915 \mathrm{MHz}, \text { PLO1 }=\text { PLO2 }= \\ & +5 \mathrm{dBm}, \mathrm{f}_{\mathrm{IF}}=100 \mathrm{MHz}(\text { Note } 5) \end{aligned}$				52		dB
Minimum Channel Isolation		$\begin{aligned} & \text { fRF }=825 \mathrm{MHz} \\ & \text { to } 915 \mathrm{MHz}, \\ & \text { fLO }=725 \mathrm{MHz} \\ & \text { to } 1085 \mathrm{MHz} \end{aligned}$	PRFMAIN $=-5 \mathrm{~d}$ terminated with Measured pow relative to IFM	Bm, RFDIV 50Ω. er at IFDIV AIN.		39.5		dBc
			PRFDIV $=-5 d B$ terminated with Measured pow IFMAIN relativ	$\begin{aligned} & \text { m, RFMAIN } \\ & \text { h } 50 \Omega . \\ & \text { ver at } \\ & \text { e to IFDIV. } \end{aligned}$		42		
LO Switching Time		50% of LOSEL to IF settled within 2°				250		ns
RF Return Loss						25		dB
LO Return Loss		LO port selected				19		dB
		LO port unselected				14.3		
IF Return Loss		RF and LO terminated into 50Ω, $\mathrm{f}_{\mathrm{IF}}=100 \mathrm{MHz}$ (Note 6)				15		dB

Note 1: Guaranteed by design and characterization.
Note 2: All limits reflect losses of external components. Output measurements taken at IF OUT of Typical Application Circuit.
Note 3: Production tested.
Note 4: Two tones at 1 MHz spacing, -5 dBm per tone at RF port.
Note 5: Measured at IF port at IF frequency. fLO1 and fLO2 are offset by 1 MHz .
Note 6: IF return loss can be optimized by external matching components.

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer

(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{P} \mathrm{PF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer

Typical Operating Characteristics (continued)

(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer

(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

INPUT IP3
vs. RF FREQUENCY HIGH-SIDE INJECTION

INPUT IP3
vs. RF FREQUENCY LOW-SIDE INJECTION

INPUT IP3
vs. RF FREQUENCY HIGH-SIDE INJECTION

INPUT P1dB
vs. RF FREQUENCY LOW-SIDE INJECTION

INPUT IP3
vs. RF FREQUENCY LOW-SIDE INJECTION

INPUT IP3
vs. RF FREQUENCY HIGH-SIDE INJECTION

INPUT P1dB
vs. RF FREQUENCY LOW-SIDE INJECTION

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer

Typical Operating Characteristics (continued)
(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer

Typical Operating Characteristics (continued)

(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{P} \mathrm{PF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer

Typical Operating Characteristics (continued)

(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer

Pin Description

PIN	NAME	FUNCTION		
1	RFMAIN	Main Channel RF Input. This input is internally matched to 50Ω and is DC shorted to ground through a balun.		
2	TAPMAIN	Main RF Balun Center Tap. Connect bypass capacitors from this pin to ground.		
3	MAINBIAS	Bias control for the Main Mixer. Connect a 267Ω resistor from this pin to ground to set the bias current for the main mixer.		
$4,5,6,11$, $12,15,17$, $18,20,22$, $24,25,26$, $28,29,31$, 34,35, EP	GND	Ground		
7	DIVBIAS	Bias Control for the Diversity Mixer. Connect a 267Ω resistor from this pin to ground to set the bias current for the diversity mixer.		
8	TAPDIV	Diversity RF Balun Center Tap. Connect bypass capacitors from this pin to ground.		
9	RFDIV	Diversity Channel RF Input. This input is internally matched to 50Ω and is DC shorted to ground through a balun.		
$10,16,21$, 30,36	VCC	Power-Supply Connections. Connect bypass capacitors as shown in the Typical Application Circuit.		
13,14	IFDIV+, IFDIV-	Differential IF Output for Diversity Mixer. Connect $560 n H$ pullup inductors and 137Ω pullup resistors from each of these pins to VCC for a $70 M H z ~ t o ~$ $00 M H z$ IF range.	,	Local Oscillator Input 1. This input is internally matched to 50Ω and is DC shorted to ground
:---				
through a balun.				

825MHz to 915MHz, Dual SiGe High-Linearity
 Active Mixer

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer

Component List			
COMPONENT	VALUE	SIZE	PART NUMBER
C1, C4	33 pF	0603	Murata GRM1885C1H330J
C2, C3	3.9 pF	0603	Murata GRM1885C1H3R9C
C5, C6, C9, C10	100 pF	0603	Murata GRM1885C1H101J
C7, C8	15 pF	0603	Murata GRM1885C1H150J
C11, C12	$0.033 \mu F$	0603	Murata GRM188R71E333K
C13, C16, C17, C20	220 pF	0603	Murata GRM1885C1H221J
C14, C15, C18, C19	330 pF	0603	Murata GRM1885C1H331J
L1-L4	560 nH	1008	CoilCraft 1008CS-561XJBB
R1, R2	$267 \Omega \pm 1 \%$	0603	-
R3-R6	$137 \Omega \pm 1 \%$	0603	-
T1, T2	$4: 1(200: 50)$	-	Mini-Circuits TC4-1W-7A

Detailed Description

The MAX9981 downconverter mixers are designed for GSM and CDMA base-station receivers with an RF frequency between 825 MHz and 915 MHz . Each active mixer provides 2.1 dB to 2.7 dB of overall conversion gain to the receive signal, removing the need for an external IF amplifier. The mixers have excellent input IP3 measuring greater than +27 dBm . The device also features integrated RF and LO baluns that allow the mixers to be driven with single-ended signals.

RF Inputs

The MAX9981 has two RF inputs (RFMAIN, RFDIV) that are internally matched to 50Ω requiring no external matching components. A 33pF DC-blocking capacitor is required at the input since the input is internally DC shorted to ground through a balun. Return loss is better than 15dB over the entire frequency range of 825 MHz to 915 MHz .

LO Inputs

The mixers can be used for either high-side or low-side injection applications with an LO frequency range of 725 MHz to 1085 MHz . An internal LO switch allows for switching between two single-ended LO ports. This is useful for fast frequency changes/frequency hopping. LO switching time is less than 250ns. The switch is controlled by a digital input (LOSEL) that when high, selects LO1 and when low, selects LO2. The selected LO input mixes with both RFMAIN and RFDIV to produce the IF signals.
Internal LO buffers allow for a wide power range on the LO ports. The LO signal power can vary from -5 dBm to +5 dBm . LO1 and LO2 are internally matched to 50Ω, so only a 15 pF DC-blocking capacitor is required at each LO port.

IF Outputs

Each mixer has an IF frequency range of 70 MHz to 170 MHz . The differential IF output ports require external pullup inductors to V_{Cc} to resonate out the differential on-chip capacitance of $1.8 p F$. See the Typical Application Circuit for recommended component values for an IF of 70 MHz to 100 MHz . The IF match can be optimized for higher IF frequencies by reducing the values of the pullup inductors L1, L2, L3, and L4. Note: Removing the ground plane from underneath these inductors reduces parasitic capacitive loading and improves VSWR.

Bias Circuitry
Connect bias resistors from MAINBIAS and DIVBIAS to ground to set the mixer bias current. A nominal resistor value of 267Ω sets an input IP3 of +27 dBm and supply current of 290 mA . Bias currents are fine-tuned at the factory and should not be adjusted.

Applications Information

Layout Considerations

A properly designed PC board is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For best performance, route the ground pin traces directly to the exposed paddle underneath the package. This paddle should be connected to the ground plane of the board by using multiple vias under the device to provide the best RF/thermal conduction path. Solder the exposed paddle, on the bottom of the device package, to a PC board exposed pad.

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer

Power Supply Bypassing

Proper voltage supply bypassing is essential for high-frequency circuit stability. Bypass each Vcc pin, TAPMAIN, and TAPDIV with the capacitors shown in the typical application circuit. Place the TAPMAIN and TAPDIV bypass capacitors to ground within 100mils of the TAPMAIN and TAPDIV pins.

TRANSISTOR COUNT: 358
PROCESS: BiCMOS

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NOTES:

1. DIE THICKNESS ALLOWABLE IS 0.305 mm MAXIMUM (. 012 INCHES MAXIMUM)
2. DIMENSIONING \& TOLERANCES CONFORM TO ASME Y14.5M. - 1994.
3.) n is the number of terminals.

Nd IS THE NUMBER OF TERMINALS in X-DIRECTION \&
Ne IS THE NUMBER OF TERMINALS IN Y-DIRECTION.
4. Dimension b applies to plated terminal and is measured BETWEEN 0.20 AND 0.25 mm FROM TERMINAL TIP.
5. THE PIN \#1 IDENTIFIER MUST BE EXISTED ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR INK/LASER MARKED.
6. EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.
7. ALL DIMENSIONS ARE IN MILLIMETERS.

PaCKAGE WARPAGE MAX 0.05 mm .
APPLIED FOR EXPOSED PAD AND TERMINALS.
EXCLUDE EMBEDDING PART OF EXPOSED PAD FROM MEASURING.
10. MEETS JEDEC MO22O.
11. THIS PACKAGE OUTLINE APPLIES TO ANVIL SINGULATION (STEPPED SIDES) AND TO SAW SINGULATION (STRAIGHT SIDES) QFN STYLES.

